지도학습(Supervised Learning)은 머신러닝의 한 방법으로, 입력 데이터와 그에 대응하는 정답 데이터가 주어진 상태에서 학습을 진행하는 방식입니다. 지도학습의 주요 목표는 주어진 입력 데이터에 대해 정확한 결과를 예측할 수 있는 기계학습 모델을 생성하는 것입니다. 이러한 모델을 사용하면 새로운 데이터가 입력되었을 때 정확한 예측을 수행할 수 있습니다. 지도학습은 크게 두 가지 종류로 구분됩니다. 회귀(Regression): 연속적인 값(숫자)을 예측하는 문제, 예를 들어, 주택 가격이나 날씨와 같은 값을 예측하는 등의 문제를 해결합니다. 분류(Classification): 범주형 레이블(카테고리)을 예측하는 문제, 예를 들어, 스팸 이메일 분류, 과일 종류 분류 등의 문제를 해결합니다. 지도..